欢迎访问刘师衡器维修、采购网!

称重传感器新国标

佚名 分享 时间: 电子地磅 皮带秤 防爆秤

全国地磅电子秤销售、维修电话158-8101-1465

全国发货,地磅秤、电子秤,有需要的朋友可以直接联系上面电话哦,微同号
推荐度:
刘师傅老技术员
电子秤的国家标准是什么?量程,精度有哪些?
电子秤的精度等级在显示器的铭牌上可以直接看出来,检定分度数在100到1000之间为四级秤,1000到10000之间为三级秤,一万到十万之间为二级秤,十万以上就是一级的。
  电子秤属于衡器的一种,利用胡克定律或力的杠杆平衡原理测定物体质量的工具。电子秤主要由承重系统(如秤盘、秤体)、传力转换系统(如杠杆传力系统、传感器)和示值系统(如刻度盘、电子显示仪表)3部分组成。按结构原理可分为机械秤、电子秤、机电结合秤三大类。
  电子秤是国家强制检定的计量器具,他的合格产品是有检定分度值e和细分值D的标准,是受国家计量法保护的产品。按照《中华人民共和国计量法》及《中华人民共和国强制检定的工作计量器具目录》的要求,凡是作为社会公用计量标准的电子秤,部门和企业、事业单位使用作最高计量标准的电子秤,以及用于贸易结算、安全防护、医疗卫生、环境监测方面的电子秤,在使用之前均需经过计量检定合格才可以使用。未按照规定申请计量检定,或者经检定后不合格的,不予使用。
  
1、按原理分:电子秤 机械秤 机电结合秤
  多功能电子秤
  
2、按功能分:计数秤 计价秤 计重秤 蓝牙秤
  
3、按用途分:工业秤 商业秤 特种秤
  
4、按放置位置分类:
  桌面秤指全称量在30Kg以下的电子秤
  台秤指全称量在30-300Kg以内的电子秤
  地磅指全称量在300Kg以上的电子秤
  精密天平
  
5、按精确度分类:

  I级:特种天平 精密度≥1/10万 基准衡器
  II级:高精度天平 1/1万≤精密度<1/10万 精密衡器
  III级:中精度天平 1/1000≤精密度<1/1万 工业.商业衡器
  IV级:普通秤 1/100≤精密度<1/1000 粗衡器
  
6、按资料传输方式分类:
  分为RS-232/ RS-485 射频(RF2.4G) 模拟讯号(Analog) 蓝牙(Bluetooth) USB接口 以太网路

  防水秤
  随着电子秤的发展,以及特殊应用场合的需求,防水秤应运而生。防水称,顾名思义就是可以防水。防水秤因防水级别的不同,防水性能上也有一定的差异。香山防水计重秤的防水级别达到最高的IP68级别,泡在水中也能称重。
  防水秤的内部采用全密封结构,防止有腐蚀性液体、汽体等对传感器弹性体的腐蚀,大大提高传感器的寿命。防水秤的目的就是防水防潮,以应对那些潮湿、盐雾等恶劣环境。防水秤一般分为防水计价秤、防水计重计数秤、防水电子台秤等。

  防水计价秤
  在原有的计价秤基础上进行防水设计,内部秤体结构重新根据防水级别设计。外部的秤盘,电源线接口,开关等都重新设计。

  防水计重秤
  防水计重秤取得防水认证全方位立体防水,大视窗,超强防滑抗摔,针对冷库严苛环境而设计。适合水产加工、海鲜加工、渔业生产等。
  特点
  1.实现远距离操作;
  人体健康秤
  2.实现自动化控制;
  3.数字显示直观、减小人为误差;
  4.准确度高、分辨率强;
  5.称量范围广;
  6.特有功能:扣重、预扣重、归零、累计、警示等;
  7.维护简单;
  8.体积小;
  9.安装、校正简单;
  10.特种行业,可接打印机或电脑驱动;
  11.智能化电子秤,反应快,效率高;
  
1、最大称量:一台电子秤不计皮重,最大秤重能力(满载值),即所能称量的

  最大的载荷;
  2.最小称量:一台电子秤在低于该值时会出现的一个相对误差;
  3.安全载荷:120%正常称量范围;
  4.额定载荷:正常称量范围;
  5.允许误差:等级检定时允许的最大偏差;
  6.感量:一台电子秤所能显示的最小刻度;通常用“d”来表示;
  7.最小刻度:起跳值,例︰60Kg×5g,5g即为最小刻度,即最小感量;
  8.刻度间隔:感量=( e ),表示每一跳会增加多少重量,例如︰300g×0.001g,0.001g即为感量;
  9.刻度间隔数:如秤由10g起跳,每10g为一刻度直到最大秤量共为多少个刻度数,
  例如︰ 100kg×10g,(100×1000)÷10=10000,10000即为刻度间隔数;
  10.精密度:感量与全称量的比值。例:秤量6000g最小刻度(感量)0.5g。即05/6000=1/12000 1/12000即为此秤之精密度;
  11.电磁干扰:无线电波所产生之干扰通称之,例如︰大哥大手机所发出的电波。
  12.解析量:一台具有计数功能的电子秤,所能分辩的最小刻度;
  13.解析度:一台具有计数功能的电子秤,内部具有分辩能力的一个参数;
  14.内部解析度:即内部精密度,如5 COUNT 1跳,则5 COUNT即为内部解析度,
  例如︰100g(秤重)×0.01g(感量),5 COUNT 1跳,0.01g÷100g=1/10000(精密度),
  1/10000÷5=1/50000(内部解析度),内部解析主要为让CPU作运算用。
  内部解析度主要常用于计数秤,简单的说即为Counting Scale所能计数分析之最小值。
  15.预热时间:一台秤达到各项指标所用的时间;
  16.OFFSET值:由COUNT中取一值做为开机零点值,主要为使秤保持在正常运作,以避免有不当情况发生。(count:指内部解析值) 一般秤在设定时,会由软体人对该机型的秤定义-OFF SET值,即零点值,可供调整时的判断及依据。
  17.SPAN值:放负载于秤所显示之值,即为SPAN,使秤放多少重量就显示多少重量,使秤不致有太大的误差出现。
  18.蠕变CREEP:经一时间负载之测试并记录其结果,看其有无变化,测试之结果,CREEP之大小

  将决定于此秤之稳定性。
  19.迟滞:取等比例之砝码往上累加放置秤上并将显示之重量记录,再将秤上的砝码等比例取下,看其是否有误差,
  有点类似Q15测线性,测试其回复性是否良好。
  20.适用温度:-10℃~+40℃。(依OIML之定义,未标明适用温度则以此为依据)。
  21.湿度:空气中含水份的相对百分比,湿度过高将影响秤的线性及稳定性,过低、太过干燥将产生静电干扰。
  22.电子秤使用环境温度为:-10℃到40℃
  23.台秤的台面规格:25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm 45cm X 60cm
  电子秤的常见两种故障解决方法:
  电子秤无法充电或充电指示灯不亮或没反应
  1. 请先确定电子秤的110V/220V?电压切换开关是否调到与使用电源一样的电压,并确定充电线已牢固的插在秤上的充电座。
  2. 检查充电线是否有外力因素而造成断路。
  3. 检查保险丝是否不良。
  4. 蓄电池不良。
  5. 为第4项原因或非上述因素,建议送回经销站处理。
称重传感器参数
一、用分项指标表示法 在介绍称重传感器技术参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用多年,熟悉的人较多。我们现在列出其主要项目如下:*额定容量 生产厂家给出的称量范围的上限值。
额定输出(灵敏度)
加额定载荷时和无载荷时,传感器输出信号的差值。由于称重传感器的输出信号与所加的激励电压有关,所以额定输出的单位以mV/V来表示。并称之为灵敏度。
灵敏度允差
传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。例如,某称重传感器的实际额定输出为2.002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2.002 – 2。000)/2.000)*100% = 0.1%
非线性
由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。
滞后允差
从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。
重复性误差
在相同的环境条件下,对传感器反复加荷到额定载荷并卸载。加荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。
蠕变
在负荷不变(一般取为额定载荷),其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分比。
零点输出
在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。
绝缘阻抗
传感器的电路和弹性体之间的直流阻抗值。
输入阻抗
信号输出端开路,传感器未加负荷时,从电源激励输入端测得的阻抗值。
输出阻抗
电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。
温度补偿范围
在此温度范围内,传感器的额定输出和零平衡均经过严密补偿,从而不会超出规定的范围。
零点温度影响
环境温度的变化引起的零平衡变化。一般以温度每变化10K时,引起的零平衡变化量对额定输出的百分比来表示。
额定输出温度影响
环境温度的变化引起的额定输出变化。一般以温度每变化10K引起额定定输出的变化量额定输出的百分比来表示。
使用温度范围
传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化
二、在《OIML60号国际建议》中采用的术语。以《OIML60号国际建议》92年版为基础,参考《JJG669--90称重传感器检定规程》新的技术参数大致有:
称重传感器输出
被测量(质量)通过称重传感器转换而得到的可测量。
称重传感器分度值
称重传感器的测量范围被等分后其中一份的大小。
称重传感器检定分度值(V)
为了准确度分级,在称重传感器测试中采用的,以质量单位表达的称重传感器分度值。
称重传感器最小检定分度值(Vmin)
称重传感器测量范围可以被分度的最小检定分度值勤。
最小静负荷(Fsmin)
可以施加于称重传感器而不会超出最大允许误差的质量的最小值。
最大称量
可以施加于称重传感器而不会超出最大允许误差的质量的最大值。
非线性(L)
称重传感器进程校准曲线与理论直线的偏差。
滞后误差(H)
施加同一级负荷时称重传感器输出读数之间的最大差值;其中一次是由最小静负荷开始的进程读数,另一次是由最大称量开始的回程读数。
蠕变(Cp)
在负荷不变,所有环境条件和其它变量也保持不变的情况下,称重传感器满负荷输出随时间的变化。
最小静负荷输出恢复植(CrFsmin)
负荷施加前,后测得的称重传感器最小静负荷输出之间的差值。
重复性误差(R)
在相同的负荷和相同的环境条件下,使连续数次进行实验所得的称重传感器输出读数之间的差值。
温度对最小静负荷输出的影响(Fsmin)
由于环境温度变化而引起的最小静负荷输出之间的变化。
温度对输出灵敏度的影响(St)
由于环境温度变化而引起的输出灵敏度的变化。
称重传感器测量范围
被测量(质量)值范围,测量结果在此范围内不会超出最大允许误差。
安全极限负荷
可以施加于称重传感器的最大负荷,此时称重传感器在性能特征上,不会产生超出规定值的永久性漂移。
温湿度对最小静负荷输出影响(FsminH)
由于温湿度变化而引起的最小静负荷输出的变化。
温湿度对输出灵敏度的影响
由于温湿度变化而引起的输出灵敏度的变化。
此外,在《JJG699—90称重传感器检定规程》中,还列出了一个技术参数,即
最小负荷(Fmin)
力发生装置能达到的最接近称重传感器最小静负荷的质量值。
正是因为传感器测量时,总要在测力机上进行,而又很难直接测量最小静负荷点性能。再要说明一点,《OIML60号国际建议》是专门为称重传感器而制定的,它对称重传感器的*定的出发点就是要适应衡器的要求。当传感器用于其它目的时,这种*估方式不一定最合适。
称重传感器的分类问题
传统概念上,负荷传感器是称重传感器、测力传感器的统称,用单项参数评价它的计量特性。旧国标将应用对象和使用环境条件完全不同的“称重”和“测力”两种传感器合二为一来考虑,对试验和评价方法未给予区分。旧国标共有21项指标,均在常温下进行试验;并用非线性、滞后误差、重复性误差、蠕变、零点温度附加误差以及额定输出温度附加误差6项指标中的最大误差,来确定称重传感器准确度等级,分别用0.0
2、0.0
3、0.05......1.0表示。

衡器上使用的一种力传感器。它能将作用在被测物体上的重力按一定比例转换成可计量的输出信号。考虑到不同使用地点的重力加速度和空气浮力对转换的影响,称重传感器的性能指标主要有线性误差、滞后误差、重复性误差、蠕变、零点温度特性和灵敏度温度特性等。在各种衡器和质量计量系统中,通常用综合误差带来综合控制传感器准确度,并将综合误差带与衡器误差带(图1)联系起来,以便选用对应于某一准确度衡器的称重传感器。国际法制计量组织(OIML)规定,传感器的误差带δ占衡器误差带Δ的70%,称重传感器的线性误差、滞后误差以及在规定温度范围内由于温度对灵敏度的影响所引起的误差等的总和不能超过误差带δ。这就允许制造厂对构成计量总误差的各个分量进行调整,从而获得期望的准确度。

称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阴应变式等8类,以电阻应变式使用最广。
光电式传感器 包括光栅式和码盘式两种。
光栅式传感器利用光栅形成的莫尔条纹把角位移转换成光电信号(图2)。光栅有两块,一为固定光栅,另一为装在表盘轴上的移动光栅。加在承重台上的被测物通过传力杠杆系统使表盘轴旋转,带动移动光栅转动,使莫尔条纹也随之移动。利用光电管、转换电路和显示仪表,即可计算出移过的莫尔条纹数量,测出光栅转动角的大小,从而确定和读出被测物质量。

码盘式传感器(图3)的码盘(符号板)是一块装在表盘轴上的透明玻璃,上面带有按一定编码方法编定的黑白相间的代码。加在承重台上的被测物通过传力杠杆使表盘轴旋转时,码盘也随之转过一定角度。光电池将透过码盘接受光信号并转换成电信号,然后由电路进行数字处理,最后在显示器上显示出代表被测质量的数字。光电式传感器曾主要用在机电结合秤上。

液压式传感器 如图4所示,在受被测物重力P作用时,液压油的压力增大,增大的程度与P成正比。测出压力的增大值,即可确定被测物的质量。液压式传感器结构简单而牢固,测量范围大,但准确度一般不超过1/100。

电磁力式传感器 它利用承重台上的负荷与电磁力相平衡的原理工作(图5)。当承重台上放有被测物时,杠杆的一端向上倾斜;光电件检测出倾斜度信号,经放大后流入线圈,产生电磁力,使杠杆恢复至平衡状态。对产生电磁平衡力的电流进行数字转换,即可确定被测物质量。电磁力式传感器准确度高,可达1/2000~1/60000,但称量范围仅在几十毫克至10千克之间。

电容式传感器 它利用电容器振荡电路的振荡频率f与极板间距d 的正比例关系工作(图6 )。极板有两块,一块固定不动,另一块可移动。在承重台加载被测物时,板簧挠曲,两极板之间的距离发生变化,电路的振荡频率也随之变化。测出频率的变化即可求出承重台上被测物的质量。电容式传感器耗电量少,造价低,准确度为1/200~1/500。

磁极变形式传感器 如图7所示,铁磁元件在被测物重力作用下发生机械变形时,内部产生应力并引起导磁率变化,使绕在铁磁元件(磁极)两侧的次级线圈的感应电压也随之变化。测量出电压的变化量即可求出加到磁极上的力,进而确定被测物的质量。磁极变形式传感器的准确度不高,一般为1/100,适用于大吨位称量工作,称量范围为几十至几万千克。

振动式传感器 弹性元件受力后,其固有振动频率与作用力的平方根成正比。测出固有频率的变化,即可求出被测物作用在弹性元件上的力,进而求出其质量。振动式传感器有振弦式和音叉式两种。
振弦式传感器(图8 )的弹性元件是弦丝。当承重台上加有被测物时,V形弦丝的交点被拉向下,且左弦的拉力增大,右弦的拉力减小。两根弦的固有频率发生不同的变化。求出两根弦的频率之差,即可求出被测物的质量。振弦式传感器的准确度较高,可达1/1000~1/10000,称量范围为100克至几百千克,但结构复杂,加工难度大,造价高。

音叉式传感器(图9 )的弹性元件是音叉。音叉端部固定有压电元件,它以音叉的固有频率振荡,并可测出振荡频率。当承重台上加有被测物时,音叉拉伸方向受力而固有频率增加,增加的程度与施加力的平方根成正比。测出固有频率的变化,即可求出重物施加于音叉上的力,进而求出重物质量。音叉式传感器耗电量小,计量准确度高达1/10000~1/200000,称量范围为500g~10kg。

陀螺仪式传感器 如图10所示,转子装在内框架中,以角速度ω绕X轴稳定旋转。内框架经轴承与外框架联接,并可绕水平轴 Y 倾斜转动。外框架经万向联轴节与机座联接,并可绕垂直轴Z 旋转。转子轴 (X轴)在未受外力作用时保持水平状态。转子轴的一端在受到外力(P/2)作用时,产生倾斜而绕垂直轴Z 转动(进动)。进动角速度ω与外力P/2成正比,通过检测频率的方法测出ω,即可求出外力大小,进而求出产生此外力的被测物的质量。

陀螺仪式传感器响应时间快(5秒),无滞后现象,温度特性好(3ppm), 振动影响小, 频率测量准确精度高,故可得到高的分辨率(1/100000)和高的计量准确度(1/30000~1/60000)。
电阻应变式传感器 利用电阻应变片变形时其电阻也随之改变的原理工作(图11)。主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。电阻应变片贴在弹性元件上,弹性元件受力变形时,其上的应变片随之变形,并导致电阻改变。测量电路测出应变片电阻的变化并变换为与外力大小成比例的电信号输出。电信号经处理后以数字形式显示出被测物的质量。

电阻应变式传感器的称量范围为300g至数千kg,计量准确度达1/1000~1/10000,结构较简单,可靠性较好。大部分电子衡器均使用此传感器。
称重传感器
理论上应该可以,不过:
1. 750KG 的传感器只能当作 350KG 来使用;
2. 关键的问题是在调角差的时候(对接线盒中的对应通道的调节电阻进行调节)。如果能够调的过来,那么就可以使用。
关于GB/T7551-2008《称重传感器》的几点迷惑
新的称重传感器国家标准不再单独计算传感器的的误差而是把传感器的误差综合计算(包括非线性,滞后和灵敏度的温度影响),单项误差的计算是采用端点连线法,综合误差的计算类似最小二乘法,比较复杂,转换系数F计算比较难,一般要采用插入法.A,B,C,D是精度级别,A精度最高,D精度最低,C3表示C级精度,最大分度3000,C后面的数字越小精度越低
称重传感器不准确
你好,我是余姚赛尔斯的技术员。称重传感器不准确首先可以和仪表重新进行标定,如果仍然不准或数据不能稳定一直跳动则有可能是称重传感器损坏
221381